MICROBIOTA DA PELE: NOVOS DESAFIOS

Autores

  • Katia Sivieri Universidade Anhanguera de São Paulo (UNIAN-SP), Docente-pesquisadora do Programa de Pós Graduação em Alimentos e Nutrição, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) http://orcid.org/0000-0001-8632-1478
  • Caroline de Codes Crespo Universidade Anhanguera de São Paulo (UNIAN-SP)
  • Juliano Novak
  • Jéssica Crema Tobara
  • Waleska Kerllen Martins

Palavras-chave:

microbiota, microbioma, técnicas moleculares, pele

Resumo

Comunidades complexas de bactérias, fungos e vírus prosperam em nossa pele. A composição dessas comunidades depende das características da pele, como concentração das glândulas sebáceas, teor de umidade e temperatura, bem como da genética do hospedeiro e fatores ambientais exógenos. Estudos metagenômicos recentes descobriram uma diversidade surpreendente dentro desses ecossistemas e promoveram uma nova visão dos organismos comensais durantes as diferentes fases da vida humana. Compreender as interações micróbio-hospedeiro e descobrir os fatores que impulsionam a colonização microbiana nos ajudará a entender a patogênese das doenças de pele e a desenvolver novas terapêuticas pro microbianas e antimicrobianas.

Biografia do Autor

  • Katia Sivieri, Universidade Anhanguera de São Paulo (UNIAN-SP), Docente-pesquisadora do Programa de Pós Graduação em Alimentos e Nutrição, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)
    Possui graduação em Ciências Biológicas pela Universidade Estadual Paulista Júlio de Mesquita Filho (1994), mestrado em Ciência e Tecnologia de Alimentos pela Escola Superior de Agricultura Luiz de Queiroz (1997) e doutorado em Tecnologia Bioquímico-Farmacêutica pela Universidade de São Paulo (2002). Possui 1 pós doutorado em Microbiologia pelo INRA-França e 2 pós-doutorados em Ciência dos Alimentos pela Faculdade de Ciências Farmacêuticas de Araraquara. Atualmente participa do projeto projeto Temático FAPESP de Intercâmbio Internacional com a University of Copenhagen, Dinamarca (Bioactive components from by-products of food processing used in a synbiotic approach for improving human health and well-being (BioSyn)). Em 2010 a 2014 coordenou projeto de Jovem pesquisador FAPESP (09/53878-8 -Implantação de sistema de três estágios de cultura contínuo e estudo da ação de probióticos, prebióticos e simbióticos sobre o câncer de cólon), o qual gerou publicação de vários artigos e parcerias nacionais (Embrapa, Unicamp e Unesp) internacionais (Ghent University e University of Copenhagen). Atualmente, coordena Auxílio à Pesquisa da FAPESP (15/13965-0) com ênfase em desenvolvimento e avaliação de alimentos, microrganismos probióticos ou ingredientes com potencial de melhorar a homeostase intestinal. Tem experiência na área de Ciência e Tecnologia de Alimentos, com ênfase em Microbiologia de Alimentos, atuando, orientando alunos de mestrado e doutorado (no Programa de Pós-Graduação em Alimentos e Nutrição, UNESP (desde 2010), principalmente nos seguintes temas: probióticos, simbióticos, desenvolvimento de alimentos funcionais, microbiota intestinal, métodos in vitro (dinâmicos ou em batelada) de avaliação da microbiota intestinal. 

Referências

BLAUT, M; CLAVEL, T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J of Nutrition. 2017; 137: 751-55.

TURNBAUGH, P.J; LEY, R.E; HAMADY, M., et al. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature. 2007; 449(7164): 804-10.

HUMAN MICROBIOME PROJECT CONSORTIUM. Structure, function and diversity of the healthy human microbiome. Nature. 2015; 486: 207-14.

DAVILA, A.M; BLACHIER, F; GOTTELAND, M., et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacological Research. 2013; 68: 95-107.

GERRITSEN, J; SMIDT, H; RIJKERS, G.T., et al. Intestinal microbiota in human health and disease: the impact of probiotics. Genes & Nutrition. 2011; 6: 209-40.

FRICK, J.S; AUTENRIETH, I.B. The gut microflora and its variety of roles in health and disease. Current Topics in Microbiology and Immunology. 2013; 358: 273-89.

DOMÍNGUEZ-DÍAZ, C; GARCÍA-OROZCO, A; RIERA-LEAL, A., et al. Microbiota and its role on viral evasion: Is it with us or against us? Front Cell Infect Microbiol. 2019; 9 :1-7.

MARTINS, W.K. Análise do perfil de expressão gênica de melanomas humanos. Fundação Antônio Prudente; 2007.

FUCHS, E. Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address. Curr. Top. Dev. Biol. 2016; 116: 357–74.

CHU, D.H. Development and Structure of Skin. In: Wolff K, Goldsmith L, Katz S, Gilchrest BA, Gilchrest B, Paller A, et al. Editors. Fitzpatrick,s Dermatology in General Medicine, 7th ed. New York: The MacGraw-Hill Companies.Inc; 2008. P.57-72.

SBARBATI, A; ACCORSI, D; BENATI, D., et al. Subcutaneous adipose tissue classification. Eur J Histochem. 2010; 54(4): 226-30.

GRICE, E.A; KONG, H.H; CONLAN, S., et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009; 324: 1190–92.

GRICE, E.A; SEGRE, J.A. The skin microbiome. Nat. Rev. Microbiol. 2013; 9: 244–53.

FEINGOLD, K.R. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res. 2007; 48: 2531–46.

SANFORD, J.A; ZHANG, L.J; WILLIAMS, M.R., et al. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol. 2016; 28: 1-4.

LINEHAN, J.L; HARRISON, O.J; HAN, S.J., et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018; 172: 784–96.

WILSON, M. Bacteriology of Humans: An Ecological Perspective. Oxford, Blackwell Publishing. 2008.

KONG, H.H; SEGRE, J.A. Skin Microbiome: Looking Back to Move Forward. J Invest Dermatol. 2012; 132(3): 933–39.

KRUTMANN, J. Pre- and probiotics for human skin. J Dermatol Sci. 2009; 54(1): 1?5.

SCHOLZ, C.F.P; KILIAN, M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016; 66: 4422–32.

OH, J; BYRD, A.L; DEMING, C., et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014; 514: 59–64.

CHEN, Y.E; TSAO, H. The skin microbiome: Current perspectives and future challenges. J Am Acad of Derm. 2013; 69: 143–55.

MURRAY, P.R; ROSENTHAL, K.S; KOBAYASHI, G.S., et al. Microbiologia médica. 4 ed. Rio de Janeiro: Guanabara Koogan. 2002; P.188–201.

Bewick, S; Gurarie, E; Weissman, J.L., et al. Trait-based analysis of the human skin microbiome. Microbiome. 2019; 7(1): 1-15.

Ding, T; Schloss, P.D. Dynamics and associations of microbial community types across the human body. Nature. 2014; 509(7500): 357-60.

CHU, D.M; MA, J; PRINCE, A.L., et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017; 23: 314–26.

CAPONE, K; DOWD, S.E; STAMATAS, G.N. Diversity of the Human Skin Microbiome Early in Life. J Invest Dermatol. 2011; 131(10): 2026–32.

SCHOMMER, N.N; GALLO, R.L. Structure and function of the human skin microbiome. Trends Microbiol. 2013; 21(12): 660–68.

SANMIGUEL, A; GRICE, E.A. Interactions between host factors and the skin microbiome. Cell Mol Life Sci. 2016; 72(8): 1499–15.

FIERER, N; HAMADY, M; LAUBER, C.L., et al. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci 55. 2008; 105(46): 17994–92008.

OH, J; CONLAN, S; POLLEY, E.C., et al. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 2012; 4: 77.

OH, J; BYRD, A.L; PARK, M., et al. Temporal stability of the human skin microbiome. Cell. 2016; 165: 854–66.

KIM, H; KIM, J.J; MYEONG, N.R., et al. Segregation of age-related skin microbiome characteristics by functionality. Sci Rep. 2019; 9: 16748.

JUGÉ, R; ROUAUD-TINGUELY, P; BREUGNOT, J., et al. Shift in skin microbiota of Western European women across aging. J Appl Microbiol. 2018; 125(3): 907?16.

ROGHMANN, M.C; LYDECKER; A.D; HITTLE, L., et al. Comparison of the Microbiota of Older Adults Living in Nursing Homes and the Community. mSphere. 2017; 2(5): e00210-17.

BLAISE, G; NIKKELS, A.F; HERMANNS-LÊ, T., et al. Corynebacterium-associated skin infections. Int J Dermatol. 2008; 47(9): 884?90.

BIKEL, S.; VALDEZ-LARA, A.; CORNEJO-GRANADOS, F. et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. CSBJ 2015; 9; 390-01.

URSELL, L; METCALF, J; PARFREY, L., et al. Defining the Human Microbiome. Nutr Rev. 2012; 70: 38–44.

SOMAYAJI, R; PRIYANTHA, M.A.R; RUBIN, J.E., et al. Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: report of 24 cases. Diagn Microbiol Infect Dis. 2016; 85(4): 471-6.

MURDOCH, D.A; MITCHELMORE, I.J; TABAQCHALI S. Peptostreptococcus micros in Polymicrobial Abscesses. Lancet. 1988; 331(8585): 594.

COX, M; COOKSON, W; MOFFATT, M., et al. Sequencing the human microbiome in health and disease. Human Molecular Genetics. 2013; 22: 88-94.

MIZRAHI-MAN, O; DAVENPORT, E; GILAD, Y. Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs. PLoS ONE. 2013; 8 (1): e53608.

PARFREY, L; KNIGHT, R. Spatial and temporal variability of the human microbiota. Clin Microbiol Infect. 2012; 18 (4): 8-11.

GAO, Z; PEREZ-PEREZ, G.I; CHEN, Y., et al. Quantification of major human cutaneous bacterial and fungal populations. J Clin Microbiol. 2010; 48: 3575–81.

LING, Z; LIU, X; LUO, Y., et al. Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics. 2013; 10: 390.

FADROSH, D.W; MA, B; GAJER, P., et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq Platform. Microbiome. 2014; 24: 2-6.

SCHLOSS, P; WESTCOTT, S; RYABIN, T., et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. ASM. 2009; 75(23): 7537-41.

BERI, K. Skin microbiome & host immunity: applications in regenerative cosmetics & transdermal drug delivery. Future Sci OA. 2018; 4(6): FSO302.

ZÁRATE, G. Dairy Propionibacteria: Less Conventional Probiotics to Improve the Human and Animal health. Probiotic in Animals. Intech Open, 2012.

MARKOWSKA, I; PEJSAK, D.Z; SZMIGIELSKI, S., et al. Stimulation of granulopoiesis in pregnant swine and their offspring by Propionibacterium avidum KP-40. Br. Vet. J. 1992; 148 (2): 133-45.

KHAYYIRA, A.S; ROSDINA A.E; IKAIRIANTI, M. Simultaneous profiling and cultivation of the skin microbiome of healthy young adult skin for the development of therapeutic agents. Heliyon. 2020; 6 (4):, e03700.

ISENBERG, J; STOFFEL, B; WOLTERS, U., et al. Immunostimulation by Propionibacteria-effects on immune status and antineoplastic treatment. Anticancer Res. 1995; 15: 2363-68.

HUANG, T.Y; HERR, D.R; HUANG C.M., et al. Amplification of probiotic bacteria in the skin microbiome to combat Staphylococcus aureus infection. Microbiology Australia. 2020; 41: 61-64.

NODAKE, Y; MATSUMOTO, S; MIURA R., et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe - A blinded randomized clinical trial. J Dermatol Sci. 2015; 79(2): 119?26.

PAETZOLD, B; WILLIS, J.R; PEREIRA DE LIMA J., et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019; 7(1): 95.

HILL, C; GUARNER, F; REID, G., et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews: Gastroenterology & hepatology. 2014; 11: 506-14.

FAO (FOOD AND NUTRITION PAPER) 85. Probiotics in food: health and nutritional properties and guidelines for evaluation. Rome: FAO/WHO, 2006. p.50.

YU, Y; DUNAWAY, S; CHAMPER, J., et al. Changing our microbiome: probiotics in dermatology. Br J Dermatol. 2020; 182(1): 39?46.

AL-GHAZZEWI, F.H; TESTER, R.F. Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro. Int J Cosmet Sci. 2010; 32: 139–42.

KANG, B.S; SEO, J.G; LEE, G.S., et al. Antimicrobial activity of Enterocins from Enterococcu,s faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol. 2009; 47: 101–09.

BLANCHET-RÉTHORÉ, S; BOURDÈS, V; MERCENIER, A., et al. Effect of a lotion containing the heat-treated probiotic strain. Clin Cosmet Investig Dermatol. 2017; 10: 249–57.

WEGH, C.A.M, GEERLINGS, S.Y, KNOL, J., et al. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 2019; 20(19): 4673.

MAGUIRE, M; MAGUIRE, G. The Role of Microbiota, and Probiotics and Prebiotics in Skin Health. Arch Dermatol Res. 2017; 309(6): 411-421.

SONNENBURG, J.L. Microbiome engineering. Nature. 2015; 518: 10.

CORDAIN, L; LINDBERG, S; HURTADO, M., et al. Acne vulgaris: a disease of western civilization. Arch Dermatol. 2002; 138: 1584–90.

BURRIS, J; RIETKERK, W; WOOLF, K. Relationships of self-reported dietary factors and perceived acne severity in a cohort of New York young adults. J Acad Nutr Diet. 2014; 114: 384–92.

GROSSI, E; CAZZNIGA, S; CROTTI, S., et al. The constellation of dietary factors in adolescent acne: a semantic connectivity map approach. J Eur Acad Dermatol Venereol. 2014; 30: 96–100.

MELNIK, B.C. Western diet-induced imbalances of FoxO1 and mTORC1 signalling promote the sebofollicular inflammasomopathy acne vulgaris. Exp Dermatol. 2016; 25(2): 103?04.

SMITH, T.M; GILLILAND, K; CLAWSON, G.A., et al. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol. 2008; 128: 1286–93.

JAHNS, A.C; LUNDSKOG, B; GANCEVICIENE, R., et al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol. 2012; 167: 50–58.

ROOD, K.M; BUHIMSCHI, I.A; JURCISEK, J.A., et al. Skin Microbiota in Obese Women at Risk for Surgical Site Infection after Cesarean Delivery. Sci Rep. 2018; 8(1): 1-8.

COSTERTON, A.J.W; STEWART, P,S; GREENBERG, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections Published by: American Association for the Advancement of Science Linked references are available on JSTOR for this article: Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999; 284: 1318-22.

MARCHESAN, J.T; MORELLI, T; MOSS, K., et al. Association of Synergistetes and cyclodipeptides with periodontitis. J Dent Res. 2015; 94(10): 1425-31.

BARRETT, K.E; GHISHAN, F.K; MERCHANT, J.L., et al. Physiology of the gastrointestinal tract. V1–2. New York: Elsevier; 2013.

GOLDSMITH, L.A; KATZ, S.I; GILCHREST, BA., et al. Fitzpatricks Dermatology in general medicine. New York: McGraw Hill Medical; 2012.

GOLDMAN, L; SCHAFER, AI. Goldman–Cecil Medicine, 25th edition. New York: Elsevier Saunders; 2015.

LEVKOVICH, T; POUTAHIDIS, T; SMILLIE, C., et al. Probiotic bacteria induce a ‘glow of health’. PLoS ONE. 2013; 8: e53867.

POUTAHIDIS, T; KEARNEY, S.M; LEVKOVICH, T., et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PloS ONE. 2013; 8: e78898.

GUENICHE, A; PHILIPPE, D; BASTIEN, P., et al. Randomised double-blind placebo-controlled study of the effect of Lactobacillus paracasei NCC 2461 on skin reactivity. Benef Microbes. 2014; 5: 137–45.

HASHIMOTO, K. Regulation of keratinocyte function by growth factors. J Dermatol Sci. 2000; 24: 46–50.

PASONEN-SEPPANEN, S; KARVINEN, S; TORRONEN, K., et al. EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation. J Invest Dermatol. 2003; 120: 1038–44.

EGEBERG, A; WEINSTOCK, L.B; THYSSEN, E.P., et al. Rosacea and gastrointestinal disorders - a population-based cohort study. Br J Dermatol. 2017; 176: 100–06.

MANZHALII, E; HORNUSS, D; STREMMEL, W. Intestinal-borne dermatoses significantly improved by oral application of Escherichia coli Nissle 1917. World J Gastroenterol. 2016; 22: 5415–21.

KIM, J; KO, Y; PARK, Y.K., et al. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition. 2010; 26: 902–09.

CHAPAT, L; CHEMIN, K; DUBOIS, B., et al. Lactobacillus casie reduces CD8þ T cell mediated skin inflammation. Eur J Immunol. 2004; 34: 2520–28.

GUENICHE A, BASTIEN P, OVIGNE JM, MERMICI M, et al. Bifidobacterium longum lysate, a new ingredient for reactive skin. Ecp Dermatol. 2010; 16: 511–17.

FLOCH, M.H; WALKER, W.A; MADSEN, K., et al. 2011. Recommendations for probiotic use - 2011 update. J Clin Gastroenterol. 2011; 45: 168–71.

LAI, Y; DI NARDO, A; NAKATSUJI, T., et al. Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009; 15: 1377–82.

ZANVIT, P; KONKEL, J.E; JIAO, X., et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015; 6: 1-10.

Downloads

Publicado

13/04/2021

Edição

Seção

Artigo de revisão

Como Citar

MICROBIOTA DA PELE: NOVOS DESAFIOS. (2021). Arquivos Catarinenses De Medicina, 50(1), 93-112. https://revista.acm.org.br/arquivos/article/view/782

Artigos Semelhantes

11-20 de 51

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.